Thus, the limits of applicability for problems of heat and mass transfer of the "chessboard® method are
broader than follows from the stability conditions (9).

NOTATION

Rjp, thermophysical transfer coefficients; Ry4, coefficient of thermal diffusivity; Ry, diffusion coeffi-
cient; Ryy, mass diffusion coefficient; Ryq, thermal diffusion coefficient; v(x, t) heat function; u(x, t) mass
function; h, 7, grid pitches; u%-‘, Vj grid analogs of the functions u, v; G, transition matrix; Ay, eigenvalues of

the matrix G; F(\), characieristic polynomial of the matrix G.
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SOLUTION OF THE TWO-DIMENSIONAL UNSTEADY
DIFFUSION EQUATION FOR VORTEX FLOW

M. A. Puzrin, O. M. Todes, UDC 66.011:518.61
and M. Z. Fainitskii

A numerical method of solution based on the use of probability analogies is presented. An ex-
ample of a calculation by the scheme developed is given.

Solid particles in fluidized bed devices take part in both random and directed motions in the form of cir-
culating flows through the whole reactor (1, 2]. This circulation can be represented as a vortex superimposed
on the diffusion intermixing of the solid phase. The intermixing process must then be described by an inhomo-
geneous differential equation for diffusion in vortex flow. It is very difficult or impossible to obtain an analytic
solution of this equation. The method of finite differences is a universal method for obtaining approximate so-
lutions of differential equations and is applicable to a broad class of problems [3].
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Fig. 2. Change of concentration distribution pattern
with time. Numbers on isolines correspond to concen-
trations: a) t=8.33-107% b) t=3.33-1073; c) t=6.67-
1073 d) t=1.25-1072.

A necessary condition for the successful application of difference methods is the stability of the approxi-
mation scheme. The use of probability schemes guarantees stability. The Monte Carlo method was used in
[4] to solve the two-dimensional steady diffusion equation, but the methqd of counting used becomes inefficient

in determining the solution at all the mesh points.
We present a more economical method of solving the two-dimensional diffusion equation.
Suppose the equation

2
S’iﬂg(?i ii) 0, L 1o, % )
ot ax% Oyt T 0x dy

is to be solved in a rectangular region G=(0,a; 0, b) with a boundary F taking the boundary condition
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and the initial condition
M .
c(x, y, 0)= —;6@), (3)

where vy and vy are components of the velocity_v. which satisfies the equations of continuity, vorticity perpen-~
dicular to the plane, and impenatrability of the boundaries:

d &
3% Ty = @
Iy 9 _q (5)
ox dy
v,lr=0. ) {6)
Since (4) is satisfied, a vector potential U exists which for steady vortex flow satisfies Poisson's equation
o o ~
ot =k (7)
and the boundary condition 8W/3dF =0, or in components:
0%, 0%y
vy : = ""sz ()
ox oy

where Q, = I'8(x—&, y—n), and T' is the vortex strength. I follows from. the boundary condition for u, that
uz|F = const. Since the velocity field is determined from uy solely by differential operations, we can set u,|F=0,
or in more detail,

uzlx=0 = u’x:a = Ov u;!y:ﬂ = Uly=p = 0. (9)

We solve the system (8), (9) by the method of separation of variables used by Grinberg to solve electro-
statics problems [5]. The solution has the form

- ch (2na+t—x)n —cos Ay —mn)  ch @na+E4+x)=n  cos n(y-+m) -
PE b b b b
Uy = — —— Ig — e - 4
4n — ch (2na + & —x)n — oS Yy +n) ch (2na +-E4-x)m — cos a(y—mn)
"~ b b b b ]
- g ra—g—xn o alp—=m 4 @Cu—Ftxa o 3G+
e M S :. e b : (10)
4 d | ﬂa—i—x)ﬂ — cos n(ben) oh ﬂa—i+x)n o ﬂ(yb——n)

The components of ¥ can be found by differentiating (10) with respect to x and y. After this we proceed
to the solution of the system (1)-(3).

We write the difference scheme for (1)-(3):
C(*is Yy trr) = Po (%0 99 C(Xpuny U )
+ Py (X Y5) € (X_ys Y ) B P (K YN E(Ks Yir B+
+ P Y e{xp Yyop b, (11)
c(0, yj t) =c(xy, y; 4y
c(@, yp ) = cla—Ax, yj;, L),

(12)
c(x;, 0, i) =c(x; Y tk)»
c(xi: b; tk) =c(x;" b"—Ayr tk)’
M,
clx;, y; 0)=1{ aAy’ e B=5 13)

0, if yj =7é 0.
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We require that

4
}‘_.,l P (%1 y) =1 (14)
S=
and
Ps Ko 59> 0s *(15)

The scheme (11) approximates Eq. (1) and satisfies condition (14) for the following values of the coef-
ficients:

(dy)*
2 1A% + (Ay)

(1 )

P2 (ks 8y) = ) ( 12 (xz, yf) Ax ) ,
(1+=55)
(

pi (%, yy) =

2§(A%° + (Mg

(16)
(A v (xu J;) Ay
x.' ] )
Poliu 80 = G+ G
@Ax? v (x,, y)Ay )
%, | — YW 9989 )
Ps (s, Y5) = STAR ~ o
To satisfy Eq. (15) we choose Ax and Ay so that
i (xn yj) Ax 1 d v (xn y]) Ay
{ 2D \< " ‘ 2D <h
with
A (Ay)* (Ax)® . (1n

2D [(Ax)? + (Ap¥1]

Equation (11) admits a probability interpretation; the coefficients ps(xl, yJ) are determined analytically
and can be interpreted as transition probab111t1es

An important condition for the use of difference methods is the satisfactory accuracy of the solution.
Since the scheme is stable with respect to the right-hand side [3], its accuracy is the same as the order of ap-
proximation and is OUAXY +(Ay))). With this scheme the process can be calculated not only with boundary con-
ditions of the first kind but also with boundary conditions of the second and third kinds, and also in the presence
of vortices, since in this case the velocity at a point is the vector sum of the velocities induced at this point by
each vortex separately.

The process can be investigated with an arbitrary initial concentration distribution and a different ratio
of the sides of the apparatus. As an example a calculation was performed with the following data: a=1.5,
b=2.9, £=0.75, n=1.45, D=150, I'=4, M=10, Ax=Ay=0.1.

The time step was found from Eq. (17),
Af = 1.67.1075.

The vortex flow pattern is shown in Fig. 1. In the limiting case of V=0 pure diffusion occurs. For D=0
Eq. (1) degenerates into a linear differential equation.

In all intermediate cases when 0 < |vb/D]| < = diffusion by "tongues" is supérimposed on the vortex flow
pattern.

Figure 2 shows isolines of the concentration field at various times. I is clear from the figure that the
concentration levels out with time and the process approaches a steady state (Fig. 2d).

NOTATION

G, rectangular region; ¢, width of region G; b,length of region G; F, boundary of region G; t, time; x, y,
linear coordinates; D, effeetlve diffusion coefficient; vy, Vys velocity components; n, normal to boundary,
c(x, y, t), concentration at point(x,y) attime t; M, mass of material; @z, component of vorticity; u vector
potential; T', vortiex strength; £, 1, coordinates of vortex; Xy, ¥j, bk, space—time coordinates of mesh points;
Ax, Ay, At, coordmate and time steps.
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